

STRUCTURE	Silicon Monolithic Integrated Circuit
PRODUCT SERIES	1ch Motor Driver
TYPE	BD6886GUL
FEATURES	Built in 1 Constant-Voltage Driver

•Absolute maximum ratings (Ta=25°C)

Parameter	Symbol	Limit	Unit
Power supply voltage	VCC	-0.5 to +6.5	V
Motor power supply voltage	VM	-0.5 to +6.5	V
Control input voltage	VIN	-0.5 to VCC+0.5	V
Input voltage for Constant-Voltage setting	VLIM	-0.5 to VM+0.5	V
Power dissipation	Pd	730 ^{%1}	mW
Operating temperature range	Topr	-25 to +85	°C
Junction temperature	Tjmax	150	°C
Storage temperature range	Tstg	-55 to +150	°C
H-bridge output current	lout	-200 to +200 ^{**2}	mA/ch

^{*1} Reduced by 5.84mW/°C over 25°C, when mounted on a glass epoxy board (50mm × 58mm × 1.75mm; 8 layers) ^{*2} Must not exceed Pd, ASO, or Tjmax of 150°C.

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	VCC	2.5	3.0	5.5	V
Motor power supply voltage	VM	2.5	5.0	5.5	V
Control input voltage	VIN	0	-	VCC	V
Input voltage for Constant-Voltage setting	VLIM	0	-	VM	V
H-bridge output current	lout	-	-	±150 ^{%3}	mA/ch

•Operating Conditions (Ta= -25°C to +85°C)

^{**3} Must not exceed Pd or ASO.

The product described in this specification is a strategic product (and/or service) subject to COCOM regulations. It should not be exported without authorization from the appropriate government authorities. This product isn't designed for protection against radioactive rays.

Package Outline

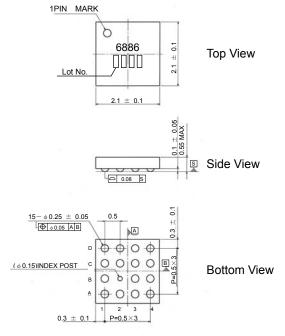


Fig.1 VCSP50L2 Package (Unit: mm)

Block Diagram

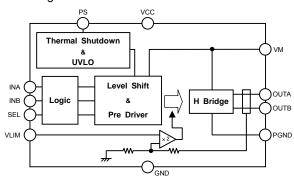


Fig.3 BD6886GUL Block Diagram

• Pin Arrangement (Top View)

	1	2	3	4
А	N.C.	OUTA	PS	N.C.
В	VM		INB	INA
С	PGND	VLIM	SEL	VCC
D	N.C.	OUTB	GND	N.C.

Fig.2 BD6886GUL Pin Arrangement (Top View)

•Pin No. and Pin Name

Pin name
N.C.
OUTA
PS
N.C.
VM
INB
INA
PGND
VLIM
SEL
VCC
N.C.
OUTB
GND
N.C.

•BD6886GUL Electrical Characteristics (Unless otherwise specified, Ta=25°C, VCC=3.0V, VM=5.0V)

			Limit			
Parameter	Symbol	Limit			Unit	Conditions
	,	Min.	Тур.	Max.		
Overall						
Circuit current	ICCST		0	10		PS=L
during standby operation	10031	-	0	10	μA	PS=L
Circuit current 1	ICC	-	0.9	1.4	mA	PS=H with no signal
Circuit current 2	IM	-	0.4	0.65	mA	PS=H, and VLIM=5V with no signal
Control input						
High-level input voltage	VINH	2.0	-	-	V	INA, INB, SEL, PS
Low-level input voltage	VINL	-	-	0.7	V	INA, INB, SEL, PS
High-level input current	IINH	15	30	60	μA	INA, INB, SEL, PS; VIN=3V
Low-level input current	IINL	-1	0	-	μA	INA, INB, SEL, PS; VIN=0V
Pull-down resistor	RIN	50	100	200	kΩ	INA, INB, SEL, PS
Input for Constant-Voltage se	etting					
Input current	IVLIM	-1.5	-0.5	-	μA	VLIM=0V
UVLO						
UVLO voltage	VUVLO	1.6	-	2.4	V	
Constant-Voltage Drive block	(ch1)					
Output ON-Resistance	RON	-	0.8	1.2	Ω	Io=±150mA on high and low sides in tota
Output high-level voltage	VOH	1.9×VLIM	2.0×VLIM	2.1×VLIM	V	VLIM=1V with 10Ω load
Turn-on time	ton	-	1.5	5.0	μs	Io= ± 150 mA with $10\Omega \text{ load}^{\ast 4}$
Turn-off time	toff	-	0.1	2.0	μs	Io= ± 150 mA with $10\Omega \text{ load}^{\times 4}$
Rise time	tr	-	2.0	8.0	μs	Io= ± 150 mA with $10\Omega \text{ load}^{\times 4}$
Fall time	tf	-	0.05	1.0	μs	Io= ± 150 mA with $10\Omega \text{ load}^{\times 4}$

**4 Design target value (No total shipment inspection is made.)

●I/O Truth Table

		BD)6886GUL I/(C Truth Table		
			INPUT	OUTPUT		
Input mode	PS	SEL	INA	INB	OUTxA	OUTxB
			L	Х	Z	Z
EN/IN		L	Н	L	Н	L
			Н	Н	L	Н
	Н		Н	Н	Z	Z
IN/IN		н	Н	L	Н	L
IIN/IIN		п	L	Н	L	Н
			L	L	L	L
-	L	Х	Х	Х	Z	Z

L: Low, H: High, X: Don't care, Z: High Impedance

The OUTPUTs are provided with feed back resistor. This is so that GND voltage will be output, when the OUTPUT is "Z".

Operation Notes

(1) Absolute maximum ratings

Use of the IC in excess of absolute maximum ratings such as the applied voltage or operating temperature range (Topr) may result in IC damage. Assumptions should not be made regarding the state of the IC (short mode or open mode) when such damage is suffered. The implementation of a physical safety measure such as a fuse should be considered when use of the IC in a special mode where the absolute maximum ratings may be exceeded is anticipated.

(2) Power supply lines

Regenerated current may flow as a result of the motor's back electromotive force. Insert capacitors between the power supply and ground pins to serve as a route for regenerated current. Determine the capacitance in full consideration of all the characteristics of the electrolytic capacitor, because the electrolytic capacitor may loose some capacitance at low temperatures. If the connected power supply does not have sufficient current absorption capacity, regenerative current will cause the voltage on the power supply line to rise, which combined with the product and its peripheral circuitry may exceed the absolute maximum ratings. It is recommended to implement a physical safety measure such as the insertion of a voltage clamp diode between the power supply and GND pins.

(3) Ground potential

Ensure a minimum GND pin potential in all operating conditions.

(4) Setting of heat

Use a thermal design that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating conditions.

(5) Actions in strong magnetic field

Use caution when using the IC in the presence of a strong magnetic field as doing so may cause the IC to malfunction.

(6) ASO

When using the IC, set the output transistor for the motor so that it does not exceed absolute maximum ratings or ASO.

(7) Thermal shutdown circuit

This IC incorporates a TSD (thermal shutdown) circuit (TSD circuit). If the temperature of the chip reaches the following temperature, the motor coil output will be opened. The thermal shutdown circuit (TSD circuit) is designed only to shut the IC off to prevent runaway thermal operation. It is not designed to protect the IC or guarantee its operation. Do not continue to use the IC after operating this circuit or use the IC in an environment where the operation of this circuit is assumed.

TSD ON temperature [°C]	Hysteresis temperature [°C]
(Тур.)	(Тур.)
175	25

(8) Ground Wiring Pattern

When using both small signal and large current GND patterns, it is recommended to isolate the two ground patterns, placing a single ground point at the application's reference point so that the pattern wiring resistance and voltage variations caused by large currents do not cause variations in the small signal ground voltage. Be careful not to change the GND wiring pattern of any external components, either.

	g or reproduction of this document, in part or in whole, is permitted without the ROHM Co.,Ltd.
The conter	nt specified herein is subject to change for improvement without notice.
"Products	nt specified herein is for the purpose of introducing ROHM's products (hereinafte '). If you wish to use any such Product, please be sure to refer to the specifications be obtained from ROHM upon request.
illustrate th	of application circuits, circuit constants and any other information contained herein the standard usage and operations of the Products. The peripheral conditions mus to account when designing circuits for mass production.
However,	was taken in ensuring the accuracy of the information specified in this document should you incur any damage arising from any inaccuracy or misprint of such n, ROHM shall bear no responsibility for such damage.
examples implicitly, a other parti	cal information specified herein is intended only to show the typical functions of and of application circuits for the Products. ROHM does not grant you, explicitly o any license to use or exercise intellectual property or other rights held by ROHM and es. ROHM shall bear no responsibility whatsoever for any dispute arising from the h technical information.
equipment	cts specified in this document are intended to be used with general-use electroni- c or devices (such as audio visual equipment, office-automation equipment, commu evices, electronic appliances and amusement devices).
The Produ	cts specified in this document are not designed to be radiation tolerant.
	HM always makes efforts to enhance the quality and reliability of its Products, a ay fail or malfunction for a variety of reasons.
against the failure of a shall bear	sure to implement in your equipment using the Products safety measures to guard e possibility of physical injury, fire or any other damage caused in the event of the ny Product, such as derating, redundancy, fire control and fail-safe designs. ROHM no responsibility whatsoever for your use of any Product outside of the prescribed ot in accordance with the instruction manual.
system wh may result instrument controller of the Pro	icts are not designed or manufactured to be used with any equipment, device of hich requires an extremely high level of reliability the failure or malfunction of which in a direct threat to human life or create a risk of human injury (such as a medica c, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel- or other safety device). ROHM shall bear no responsibility in any way for use of an ducts for the above special purposes. If a Product is intended to be used for an ial purpose, please contact a ROHM sales representative before purchasing.
be control	nd to export or ship overseas any Product or technology specified herein that ma led under the Foreign Exchange and the Foreign Trade Law, you will be required to cense or permit under the Law.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/